A	2-amino-4-(methylseleno)-butanoic acid
Absorption, 228-230, 235-237, 245	see selenomethionine
ACE-inhibitory peptides, 212–218	Amlaor, 309
dairy products, 48, 247	Amorphophallus konjac, 288
fermented cheese, 247	Amorphous calcium phosphate (ACP), 235, 237
milk protein-derived, 209, 210, 211	AMP see advanced Maillard products
spontaneously hypertensive rat, 232-234	Angiotensin I-converting enzyme see ACE
trypsin produced, 240	Animal feed supplements, 92-94
Acetylation, 3	Animal proteins, 216, 218
Aconitum napellus, 150	Anti-inflammatory activity
ACP see amorphous calcium phosphate	Echinacea, 155-156
Advanced Maillard products (AMP), 28, 35	lactoferrin, 187-188
Adverse reactions, Echinacea, 160-161	Antibodies see immunoglobulins
AFP see antifreeze proteins	Anticariogenic properties of milk proteins, 50
Aged garlic extract (AGE), 298, 319	Antifreeze proteins (AFP), 205-206
Aggregation, 35-37, 51-52	Antigenicity, 41
AGP see arabinogalactan-protein	Antihypertensive activity
AIDS see HIV/AIDS	ACE-inhibitory peptides, 232-234
Alcohols, 11, 12, 14	fermented dairy products, 245-247
Algae, 79–80, 297	whey protein effect, 182
Alkamides, 115, 117–129, 144, 146, 156	Antimicrobial activity
Alkylation, 3	see also microorganisms; viruses
Allergenicity, 40–41, 43, 248	Echinacea, 154-155
Allicin, 298	Maillard reaction, 33, 34–35
Allium cepa, 298	milk protein-derived bioactive peptides, 47,
A. sativum, 298, 318–322	49, 186–187, 210, 211, 222, 223, 235
S-allyl cysteine (SAC), 298, 319	Antioxidants
Amadori products, 27–28	Echinacea, 155-156, 161-164
Amidation, 3	flavonoids, 292-294
Amino acids	β-lactoglobulin after glycation, 33, 34
see also individual amino acids	peptides, 226
bitterness, 41–42	Antithrombotic peptides, 47, 49, 210, 218
incorporation by transglutaminase into	Antiviral activity
proteins, 43	Echinacea, 154–155

lactoferrin, 186–187	Camellia chinensis, 292
milk proteins, 25–27, 186–187	Campesterol, 289, 291
Apis mellifica, 150	Cancer, 180-181, 304
Apium graveolens, 311–312	Candida albicans, 154–155
Apocynum venetum, 304–305	CAP see caffeic acid phenols
Arabinogalactan-protein (AGP), 140-142	Capparis decidua, 289
Arabinose, 28, 29, 30, 31, 32, 34	Carbamylation, 3
Arginine, 5–6, 8, 10	Carboxymethylation, 4
Arjun, 309–310	Caries, 50, 235, 237
Arnica montana, 150	β-carotene, 282, 287, 292
Artichoke, 314	Casein phosphopeptide see caseinophospho-
Aspergillus tereus, 297	peptide fragments
Atherosclerosis	Caseinomacropeptide see glycomacropeptide
garlic, 320–322	Caseinophosphopeptide (CPP) fragments
herbs, 322–324	bioactive peptides as ingredients, 245
plant products, 278-279, 292-294, 296, 298	isolation, 241
Autoimmune conditions, 160	mineral-binding, 49-50, 224-225, 235-237
Avena sativa, 288	Caseins
Ayurvedic medicines, 305–308, 318	see also milk proteins
,	α_{s1} -casein, transglutaminase gelatinization,
В	43
Bacteriophage replication, 25-27	β-casein
Baptisia tinctoria, 150	esterification and ester derivatives, 15,
Bengal gram, 305	20, 22–23
Beverages, 245–247	hydrolysis studies, 54–57
Bilberry fruit, 314	peptic hydrolysis, 16–17
Bioactive proteins and peptides	transglutaminases, 44
bioactive food proteins, 176–206	к-casein
bioactive peptides from food proteins,	glycomacropeptide bioactivity, 191–194
207–237	immunosuppressive effect, 180
research needs, 248–249	bioactive peptides and proteins, 177, 178,
safety implications, 247–248	180, 207–208, 209–210
technological production processes,	cross-linked/native nutritional comparison,
237–247	45
Bioavailability, selenomethionine, 88–90	phosphorylation, 4–8, 9
Biosynthesis, selenomethionine, 78, 79	proteolytic modification, 38–40
Bitter peptides, 41–42, 227	Casokinins, 213
Bovine colostrum, 178–179, 195–196, 201–202	Casomorphins, 45, 46, 48, 207–208, 230, 231
Bovine haemoglobin, 212	Casoplatelins, 47, 49
Bovine milk, 40, 178–179, 218–220	Casoxins, 45, 46, 48
Browning reactions see Maillard reactions	Catechins, 286, 294–295
Dio wining reactions see mannatur reactions	Celery, 311–312
C	Cereals, 203–204
Caffeic acid phenols (CAP), 116, 117–118,	Channa, 305
129–140, 144–147, 153, 154–156	Chicory, 312
Calcium	Chitosan, 289
absorption, 235–236	Chlorogenic acid, 116, 132–133, 135, 155
amorphous calcium phosphate, 235, 237	Cholesterol, 289–292
mineral-binding peptides, 49–50, 224–225,	see also hypercholesterolemia
245	Chromatography, selenomethionine, 75–76
210	emematography, selenomethomne, 15-10

Cicer arietinum, 305	1,2-dimethyl hydrazine (DMH), 299, 304
Cichoric acid, 116, 129-134, 135-140, 144,	Dimethylselenide (DMSe), 79, 80
145, 153, 154	Diosgenin, 291
Cichorium intybus, 312	Disulfide interactions, 51–52
Citrus flavonoids, 283, 294	DMH see 1,2-dimethyl hydrazine
Citrus paradisi, 294	DMSe see dimethylselenide
Clastogenic activity, 33	DNA, esterified milk proteins, 23, 25–27
Clinical evaluations, <i>Echinacea</i> , 156–159	Drinks see beverages
Co-denaturation, 35–37	DSHEA see Dietary Supplement Health and
Cold, common, 156–159	Education Act of 1994
Colon cancer, 304	
Colostrum, 178–179, 195–196, 201–202	${f E}$
Commiphora mukul, 291, 305-308	EAI see emulsifying activity index
Common cold, 156–159	Echinacea, 113–173
Coraindrum sativum, 299, 304	additive, 161–164
Cordyceps sinensis, 297	adverse reactions, 160–161
Coriander seed, 299, 304	alkamides, 115, 117-119
Coronary artery diseases (CAD), 279	anti-inflammatory activity, 156
Cows, 92–93	collection/analysis, 119–122
Cow's milk see bovine milk	isolation/structure, 122–124
COX see cyclooxygenase	quality assurance, 146
CPP fragments see caseinophosphopeptide	recovery/stability, 124–129
fragments	standardization, 144
Crataegus spp., 313	anti-inflammatory activity, 155–156
Cross-linking of proteins, 42–45, 53	antimicrobial activity, 154–155
Curcuma longa, 308–309	antioxidant activity, 155–156, 161–164
Curd 52	antiviral activity, 154–155
Cyclooxygenase (COX) inhibitors, 156	autoimmune conditions, 160
Cynara scolymus, 314	biological activities, 148-156
Cynarin, 116, 132, 155	caffeic acid phenols, 116, 117–118
Cytokines, 149–153	collection/analysis, 129–133
Cytomegalovirus, 25	isolation/structure, 133-135
Cytotoxicity, 33, 35	quality assurance, 145–147
-,,,,	recovery/stability, 135–140
D	standardization, 144–145
DADS see diallyl disulfide	clinical evaluations, 156–159
Dairy cows, 92–93	glycoproteins, 140–144
Dairy proteins see caseins; milk proteins; whey	history of usage, 113–117
proteins	HIV/AIDS, 154, 160
Defense mechanism <i>see</i> immune system	immunology, 148–153
Denaturation, 35–37	ketoalkenes/ketoalkynes, 115, 117–118,
Diabetes, 311	121, 124
Diallyl disulfide (DADS), 298, 319	leukemia, 150–151
Diet	phagocytosis, 149–150, 151–152, 154, 158
bioactive peptides and proteins, 175–276	polysaccharides, 117, 140–144, 152–153,
fibers, 282, 284, 288–289	154–155, 156
hypercholesterolemia, 281	pregnancy, 160
Dietary Supplement Health and Education Act of	product regulations, 147–148
1994 (DSHEA), Echinacea, 148	quality assurance, 145–147
Digestion, 228–230, 239–241	species classification, 113–114

standardization, 144-145	Fractionation techniques, 237–239
toxicology, 159-161	Functional foods
upper respiratory infections, 156–159	bioactive peptides, 245-247
Eggs	Echinacea, 113–173
bioactive peptides and proteins, 202–203,	Functional properties
217, 221	chemical modification, 2–37, 58
selenium supplementation, 94	enzymatic protein processing, 38–40
Emblica officinalis, 309	esterification, 17–23
Emulsification	genetic engineering of milk proteins and
esterification of milk proteins, 17-18,	proteases, 50–57
23, 24	β-lactoglobulin glycation, 30–32
β-lactoglobulin after glycation, 32	milk protein modification, 1–71
proteolytic modification, 38–39, 40	Fungal polysaccharides, 282, 297
transglutaminase cross-linking of milk	Furostanols, 286, 291–292
proteins, 44	1 4105(411015, 200, 2)1 2)2
Emulsifying activity index (EAI), 6–8, 10	G
English horseradish, 304	Garlic, 298, 318–322
Enzymes	Gastrointestinal (GI) tract
bioactive peptide production, 239–241	bioactive peptides, 228–230, 231
milk protein processing, 37–50, 58–59	glycomacropeptide, 192–193
recombinant, 53–57	immune milk preparations, 197–200
selenomethionine analysis, 76	Gelation
selenomethionine degradation, 86–87	β-lactoglobulin, 52–53
Esterification, 2–4, 10–27	proteolytic modification, 39, 40
Ethanol, 12–14, 15	transglutaminase, 43–44
	_
Eupartorium perfoliatum, 150	Generally recognized as safe (GRAS), 116, 148
Evening primrose, 312	Genetic engineering, 50–57
Excretion of selenomethionine, 85–86	GI tract see gastrointestinal tract
Exorphins see opioid peptides	Gingko biloba, 292
F	γ-glutamylization, 42
F	Glutathione, 181
Familial hypercholesterolemia (FH), 290	Glutathione peroxidases (GSH-Px), 87–88, 89,
Fatty acids, 284, 296	90-91
Fenugreek, 310–311	Glycation of β-lactoglobulin, 27–35
Fermented dairy products, 242–247	Glycine max, 314–315
FH see familial hypercholesterolemia	Glycomacropeptide (GMP)
Fibers, 282, 284, 288–289	bioactivity, 178, 180, 182, 191–194
Fibrates, 280–281	immunosuppressive effect, 180, 182, 193
Ficus glomerata, 289	Glycoproteins, 140–144
F. religiosa, 289	GMP see glycomacropeptide
Flavonoids, 282, 283, 292–294	Grapes, 313
Flavor, 226–227	GRAS see generally recognized as safe
Flaxseed, 317–318	Grifolia frondosa, 288
Foaming	Growth factors, 179, 201–202
β-lactoglobulin after glycation, 32	GSH-Px see glutathione peroxidases
phosphorylated caseins, 8, 9	Guanidination, 3
proteolytic modification, 39–40	Guar gum, 283
Food processing, 242–245	Guggul, 305–308
Food supplements, 74, 91–94	Guggulipid, 283, 291, 305-308
Foods for Specified Health Use (FOSHU), 148	Guggulsterones, 286, 291, 307

Н	Curcuma longa, 308–309
Haemoglobin, 212	Cynara scolymus, 314
Hawthorn, 313	Emblica officinalis, 309
HDL see high density lipoprotein	<i>Glycine max</i> , 314–315
Health Canada, 116, 147–148	Inula racemosa, 309
Heparin, 282	Linum usitatissimum, 317-318
Herbs, hypercholesterolemia, 298-324	Monascus purpureus, 316
High density lipoprotein (HDL), 278-281, 290,	Moringa oliefera, 304
295-296	Oenothera biennis, 312
Histidine, 6	Phyllanthus niruri, 299
HIV/AIDS, 154, 160	Plantago psyllium, 315-316
HMG-CoA reductase, 279–280, 282, 291	Portulaca oleracea, 313
Hordeum vulgare, 288	Silybum marianum, 316–317
Horseradish, English, 304	Terminalia arjuna, 309-310
Human milk, 40	Trigonella foenumgraecum, 310-311
Hydrolysis	Vaccinium myrtillus, 314
bioactive peptide production, 239–241	Vitis vinifera, 313
bitter peptide formation, 41-42, 227	indoles, 282, 296
β-casein ester derivatives, 16–17	lycopene, 282, 285, 292
DNA complexes with esterified proteins,	mevinolin, 282, 297
26–27	plant products, 278–279, 281–324
enzymatic protein processing, 38-40	propionate, 297
α -lactalbumin ester derivatives, 16, 17	resveratrol, 286, 296–297
β-lactoglobulin ester derivatives,	rice bran oil, 297
10, 15–16	saponins, 284, 295
recombinant enzyme design, 54–57	soybean protein, 282, 295–296
selenomethionine analysis, 76–77	sterols, 282, 284–287, 289–292
whey proteins, 40–41	sulfur-containing compounds, 282, 285,
(β-hydroxy-β-methylglutaryl)-CoA	298
see HMG-CoA	tea polyphenolics, 283, 294–295
4-hydroxyisoleucine, 311	unsaturated fatty acids, 284, 296
Hypertension see antihypertensive activity	Hypolipidemia
Hypocholesterolemia, 277-338	current therapies, 279–281
algal extracts, 297	garlic, 318, 320-322
β-carotene, 282, 287, 292	herbs, 306-7, 322-324
citrus flavonoids, 283, 294	plant products, 278-279
current therapies, 279-281	
dietary factors, 281	I
dietary fibers, 282, 284, 288-289	Ice-binding proteins, 205-206
flavonoids, 282, 283, 292-294	IFN see interferons
fungal polysaccharides, 282, 297	IGF-I/IGF-II see insulin-like growth factors
herbs, 298–324	IL see interleukins
Allium sativum, 318-322	Ileum-contracting peptides, 225
Apium graveolens, 311-312	Immobilized enzymes, 53-54
Apocynum venetum, 304–305	Immune milk preparations, 197-200
Cicer arietinum, 305	Immune system
Cichorium intybus, 312	bioactive peptides, 209, 210, 218–221,
Commiphora mukul, 305–308	234–235
Coraindrum sativum, 299, 304	к-casein, 180
Crataegus spp., 313	Echinacea, 148-153

glycomacropeptide, 180, 182, 193	Lactoferrin
lactoferrin, 187–188	antimicrobial activity, 186–187, 222,
selenomethionine, 90–91	223
Immunoglobulins	biological functions, 178, 185–187
biological importance, 178, 195-196	commercial applications, 189
commercial utilization, 197	immune system, 187–188
milk and colostrum, 195-196	inflammatory response, 187-188
structure and functions, 194-195	isolation, 239
technological properties, 196-197	milk protein antiviral effects, 25
Immunopeptides	nutritional significance, 188-189
bovine milk, 218–220	structural and biochemical properties,
milk proteins, 48-49	184-185
proline-rich polypeptides, 220-221	technological properties, 185
Indoles, 282, 296	β-lactoglobulin (β-lg)
Inflammatory response, lactoferrin,	allergenicity reduction by hydrolysis, 40
187–188	bioactivity, 178, 183–184
Injection, selenomethionine organ distribution	DNA complexes with esterified derivatives,
after, 84–85	23, 25, 26–27
Insulin-like growth factors (IGF-1/IGF-II), 201	esterification and ester derivatives, 10,
Intake recommendations for selenium,	11-14, 18-20, 23, 25
101–102	gelation, 52–53
Interferons (IFN), 152	glycation under mild conditions, 27–35
Interleukins (IL), 149–150, 152–153	isolation, 238
Inula racemosa, 309	limited proteolysis, 39
Inulin, 142, 283	oil-water interface, 17
Iron, 184, 185, 186, 236–237	phosphorylation, 8, 10
Isoflavones, 283	thermal structural modifications, 35–37
Isolation techniques, bioactive proteins and	thermostability, 51–52
peptides, 237–239	Lactokinins, 214
Isracidin, 235	Lactoperoxidase, 179, 182, 189-191, 239
	Lactorphins, 45, 46, 208, 211, 212
J	α-lactulosyllysine, 28
Juglans vigra, 288	LDL see low density lipoprotein
Vilgitiis 71874, 200	Leukemia, 150–151
K	β-lg see β-lactoglobulin
Ketoalkenes/ketoalkynes, 115, 117–118, 121,	Limited proteolysis, 38–40
124	Linum usitatissimum, 317–318
121	Lipoxygenase (LOX), 293
L	Listeria monocytogens, 154–155
α-la see α-lactalbumin	Low density lipoprotein (LDL), 279–281,
Lachesis muta, 150	288–296
α -lactalbumin (α -la)	LOX see lipoxygenase
bioactivity, 178, 182–183	LP-system, 189–191
DNA complexes with esterified derivatives,	see also lactoperoxidase
23, 25, 26–27	Luobuma, 304–305
esterification and ester derivatives, 14, 16,	Lycopene, 282, 285, 292
17, 20, 21, 23, 25	Lycopene, 282, 283, 292 Lymphocytes
isolation, 238	* * *
	casein, 177, 180
thermal structural modifications, 35–37	immunopeptides, 219–220
Lactoferricin, 47, 235	in vivo whey proteins, 182

Lysine, 5–6, 8, 10, 27–28	N
Lysozyme (LZM), 179, 202, 203	N-esterification see esterification
	Nanofiltration, 238
\mathbf{M}	Nardostachyas jatamansi, 308
Maillard (nonenzymatic browning) reactions,	Naringin, 287, 294
27-35	Natural killer (NK) cells, 149-151
Marine phytoplankton, 79-80	Nervous system, 230–231
Membrane separation, 237, 238, 239, 241	Nicotinic acid, 279
Metabolism, selenomethionine, 86–91	NK see natural killer
Methanol, 11, 12, 14, 15	Nonenzymatic browning reactions see Maillard
Methionine	reactions
see also selenomethionine	Nutraceuticals, 59
selenomethionine comparison, 75	
selenomethionine replacement in proteins,	0
82-83	O-esterification see esterification
Methionine selenoxide, 75	Oenothera biennis, 312
Mevinolin, 282, 297	Opioid peptides, 207–212
Microbial transglutaminase see transglutaminase	milk proteins, 45, 46, 48
Microorganisms	nervous system effects, 230-231
see also antimicrobial activity	Organoleptic perception, 18
bioactive peptides, 210, 211, 222-223,	Organs, selenomethionine, 83-85
235	Oryza sativa, 297
glycomacropeptide, 192-3	Oxidation, 4
immune milk preparations, 197-200	
lactoferrin, 186-187	P
LP-system, 189-191	PBMC see peripheral mononuclear cells
Milk	Pepsinolysis see peptic hydrolysis
allergenicity, 40	Peptic hydrolysis
bovine, 40, 178-179, 218-220	β-casein ester derivatives, 16–17
LP-system preservation, 191	α -lactalbumin ester derivatives, 16, 17
Milk proteins	β-lactoglobulin ester derivatives, 10, 15–16
see also caseins; individual milk proteins;	Peptides
whey proteins	absorption, 228-230
bioactive peptides and proteins, 176-202,	bioactive proteins and, 175-276
207–212, 233	bitterness, 41–42
chemical modification, 2-37, 58	food protein derived bioactive, 207-237
enzymatic processing, 37–50	fraction enrichment, 239-241
function, 176	Peripheral mononuclear cells (PBMC), 153
functional and biological property	pH
improvement, 1–71	esterified milk protein functional properties,
genetic engineering, 50–57	17–23
liberation of bioactive peptides during	whey protein denaturation, 35, 36, 37
processing, 242–245	pH-solubility curves
Milk thistle, 316–317	β-lactoglobulin glycation, 30–32
Mineral-binding peptides, 49–50, 209,	phosphorylated caseins, 6, 7
223–225, 235–237, 245	Phagocytosis, 149-150, 151-152, 154, 158
Monascus purpureus, 316	Phenolic acids, 133
Monotes engleri, 294	Phenylpropanoid glycosides, 116
Moringa oliefera, 304	Phosphoamidation, 5−6
Muscles, 83–84	Phosphorylation, 2–10

Phyllanthus niruri, 299	Q
Phytoplankton, 79–80	Quality assurance, 145–147
Phytosterols, 284, 289–292	Quinyl esters of caffeic acid, 116
Pigs, 93, 95–96	
Plantago psyllium, 315–316	R
Plantain, 315–316	Rafuma, 304–305
Plants	Rats, spontaneously hypertensive, 232-234
see also individual plant names	Recombinant enzymes, 53–57
herbs, 298–324	Red yeast rice, 316
proteins, 203-205, 214-215	Reductive alkylation, 3
seleniferous, 74, 77-79	Regulations, Echinacea, 147-148
Polyphenol oxidase (PPO), 135-139	Resveratrol, 286, 296-297
Polyphenolics, 283, 292-295, 296-297	Retention, selenomethionine, 85-86
Polysaccharides	Ribose, 28, 29, 30, 31, 32, 34
Echinacea, 117, 140-144, 152-153,	Rice bran oil, 297
154–155, 156	
hypercholesterolemia, 282, 297	\mathbf{S}
Portulaca oleracea, 313	SAC see S-allyl cysteine
Poultry, 93–94	Saccharomyces cerevisiae see Se yeast
PPO see polyphenol oxidase	Sajna, 304
Pregnancy, 160	Saponins, 284, 295
Probucol, 281	SDS-PAGE
Product regulations, <i>Echinacea</i> , 147–148	casein phosphorylation, 5
Production processes, bioactive proteins and	esterified β-caseins, 16–17
peptides, 237–247	esterified α -lactalbumin, 14, 17
Proline-rich polypeptides (PRP), 220–221	β-lactoglobulin glycation, 29
Propanol, 14, 15	Se yeast, 74, 80–82
Propionate, 297	animal feed supplement, 92–94
Prosopsis cinceria, 289	selenomethionine determination, 76
Proteases, genetic engineering, 54–57	Selenate/selenite
Proteins	see also selenomethionine
absorption, 228–230	inorganic Se yeast preparations, 74, 82 organ distribution after injection, 84
animal, 216, 218	toxicity, 78, 95, 96, 97
bioactive peptides and, 175–276 cross-linking, 42–45, 53	uptake, retention and excretion, 85
esterification, 10–27	Selenium
milk, 1–71	reference values, 99–100
phosphorylation, 2–10	requirements and recommended dietary
plant, 203–205, 214–215	intakes, 101–102
selenomethionine replacement of	supplementation, 74, 91–94, 100
methionine, 82–83	uptake, retention and excretion, 85
Proteolysis	Selenoenzymes, 87–88, 89
bitter peptide formation, 41–42	Selenomethionine (SeMet), 73–112
functional properties, 38–40	analysis, 75–77
selenomethionine analysis, 76–77	human selenium supplementation, 91–92,
PRP see proline-rich polypeptides	100
Prunus davidiana, 294	introduction, 74
Purple coneflower see Echinacea	isomers, 75, 97–98
Purslane, 313	metabolism, 86–91
Pushkarmool, 309	natural occurrence and biosynthesis, 77-82

	T
properties, 74–75	Tocotrienols, 282
proteins and enzymes containing, 82–86	Toxicity, Se/Se-compounds, 74, 78, 94–100
Se and recommended dietary intakes,	Toxicology, Echinacea, 159–161
101–102	Transglutaminase, 42–45, 53
Se yeast as animal feed supplement, 92–94	Tremella fuciformis, 297
synthesis, 77	Triglyceride-rich lipoproteins (TRLPs), 279
toxicity, 74, 94–100	Trigonella foenumgraecum, 310-311
Selenosis, 100	Trypsin, 54–57
see also selenomethionine toxicity	Tumor necrosis factors (TNF), 149-150,
SeMet see selenomethionine	152–153
SHR see spontaneously hypertensive rat	Turmeric, 308–309
Side effects, Echinacea, 160–161	
Silybum marianum, 316–317	${f U}$
Site-directed mutagenesis, 54-57	UF see ultrafiltration
Sitostanol, 282, 289-290	Ultra high temperature (UHT) treatment, 185
Sitosterols, 282, 287, 289-291	Ultrafiltration (UF), 237, 239, 241
Solubility	Unsaturated fatty acids, 284, 296
esterification of milk proteins, 17–23	Upper respiratory infections (URI), 156–159
β-lactoglobulin after glycation, 30–32	Uptake of selenomethionine, 85–86
proteolytic modification, 38	URI see upper respiratory infections
Soybean protein, 204, 282, 295–296, 314–315	ord see upper respiratory infections
Spirulina, 297	\mathbf{v}
Spontaneously hypertensive rat (SHR), 232–234	Vaccinium myrtillus, 314
Squalene, 291	Vanillic acids, 133
=	
Standardization, Echinacea, 144–145	Very low density lipoproteins (VLDL),
Statins, 280 Starala, 282, 284, 287, 280, 202	280–281, 294, 296
Sterols, 282, 284–287, 289–292	Viruses, 25–27, 154–155, 186–187
Stigmasterol, 286, 289	Vitamin C, 150
Succinylation, 3	Vitis vinifera, 313
Sugars, 27–35	VLDL see very low density lipoproteins
Sulfur-containing compounds, 282, 285, 298	
Supplementation, selenomethionine, 74, 91–94,	W
100	Wheat gluten, 212
Sweet-tasting proteins, 203–204	Whey, 30, 52–53
	Whey proteins
T	see also individual proteins; milk proteins
Tannins, 205	antihypertensive effect, 182
Tartaric acids, 116	bioactive peptides and proteins, 177, 180–202
Taste, 205, 226-227	cancer inhibition, 180–181
Tea polyphenolics, 283, 294-295	cariostatic effects, 50
Teeth, 237	emulsifying properties, 17
Terminalia arjuna, 309-310	food formulations, 51
Theaflavins, 294–295	limited proteolysis, 39, 40
Thermal structural modifications, whey proteins,	opioid peptides, 208, 211-212
35–37	technological production processes, 237–239
Thermostability, β-lactoglobulin, 51–52	thermal structural modifications, 35–37
Thiocyanate anion, 189, 190	,
Thuja occidentalis, 150	Y
Tissues, selenomethionine, 83–85, 88–90	Yeast see Se yeast
TNF see tumor necrosis factors	Yoghurt, 44, 52–53